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We expound a method of reducing a class of dual integral equations which find 
important practical application to infinite algebraic systems of.the first kind. 
The latter system can be reduced to the systems of the second kind by exact 

inversion of the principal singular part, and the second kind systems can be 
solved using the method of consecutive approximations [l - 63. The dual in- 

tegral equations generated by the Kontorovich-Lebedev and Mehler-Fock inte- 
gral transforms are considered as examples as well as the problems of torsion 
of a truncated elastic sphere by a punch and that of a circular crack in an elas- 
tic space. 

1. General theory, Let the following second order linear differential equation 
in x be given: 

(L-u~)~/=O, 0<<1<03 (1.1) 

By solving the corresponding Sturm-Liouville problem for this equation on the interval 
x E [0, m), we construct the following integral transform: 

g(x) &(@B(~,+% G(u) &(:)M(u.~)@ (1.2) 
0 0 

Here B (u, X) is the eigenfunction of (1.1) for any u E IO, 00)~ vanishing at infinity 
and bounded at zero. We shall call this function a solution of the first kind. 

Let us now consider the dual integral equation 
m 

s o O(U)K(U)B(U,5)du=f(X), a<r<b (1.3) 

@2 

s o Q(~)B(u,s)du=o, O<.r<n, b<.r<w 

K (u) = A * =Y A rr (i-t fq1+ +)-‘, .I COIISL (1.4) 
n=o ,I 

Here K (z!) is an even meromorphic function of the form (1.4) where i6, and iy, 

represent a denumerable set of zeros and poles of K (u). We assume that there are no 
multiple zeros and poles and that 6, + ynL (n, fa :. 1, 2, 3 . ..). Let also 6, and vn 
increase monotonously in absolute value with increasing n thus ensuring the convergence 

of the infinite product (1.4). Ler also the following estimate hold on any proper system 

of contours C, (C, c Cn+J : 

K (zz) = 0 (I 77 I “), p < 1 (1.5) 
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Utilizing the fact that by applying the operational L to the function B (!I, X) we ob- 
tain 7~~ B (II, x), and taking into account (1.4) we can write the first relation of the 
dual equation (1.3) in the form 

AP, (L) s(s) = P2 (L) f (2), a ,(z,<b 0.6) 
N 

q (x) = s Q (27) B (u, 5) au 
0 

(1.7) 

where I-‘, (L) and Pa (L) are infinite order differential operators in .^I: , 
The solution of (1.6) with respect to q (x) can be written in the form 

q (x) = a / (4 + 5 iC,,B (&, 4 + n,R (ih,, x)1 (1.8) 
,,==1 

Here the first term represents a particular solution of an inhomogeneous equation ob- 
tained by symbolic methods, and the infinite sum gives the general solution of the homo- 

geneous equation. The function R (u, x) represents a solution of the second kind of 
the equation (1. l), and is linearly independent of B (u, x). 

From (1.7), (1.8) and the second relation of (1.3) we obtain 

In the following we shall set f (x) = B (e, r), remembering that the function f(,r) 
can, in a general case, be represented by the integral (1.2) or approximated by means 

of a linear combination of the function B (ek, :r) (k = 1,2,3, . . . , N). The first 
term in (1.8) nowassumes the form. K-l (a) B ( F, x). Taking this into account and sub- 
stituting (1.8) into (1.9), we obtain 

0 (u) = k’+(e) Cp (K - ie) -t i [c,Cp (u, 6,) + @zll, (u, 6,)1 (1.10) 
rr=i 

(f(t~,x):--1.61(ix,:)~~I(~,5)dS, I/+L,~)=~R(~x,~)M(u,E)~E 
a (1 

The constants C, and D,must now be found from the condition that the solution (1.10) 
satisfies the initial dual equation (1.3). 

We note that under the assumptions made above, we can represent the meromorphic 

function K (u) by a sum of its principal values 

R (u) = A 
Sk = ni ([K-‘(iyk)j’)-’ (1.11) 

The relation (1.11) yields expressions for K (~2) - K (E) and for K (u) - K (&). 
Inserting now (1.10) into the first relation of (1.3) and taking into account the fact that 

~v(~,-ii)u(~,,5)dii-_i(x) = B(F x) a<~,(6 ‘7 7 \ 
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by definition, and also that K (is,) = 0, we obtain 

~-l~~~~~(LL,-i&)~~(~)-~(E~]~(~,~)d~+ 

IO 

0 

Taking also into account the expressions for the differences within the square brackets, 
we obtain m 

t: --{ shrk 
k=l 

$T;.: Tk tx, - ie) + ,, T 2 16 2 LW, (x,&J + (1, 12) 
k i-8 

Futher study of the relations (1.12) cannot be made without knowing the particular 
forms assumed by the functions B (u, x), cp ( II, z) and Q (u, z). Nevertheless we can 
establish the final structure of (1.12). To do this we solve the differential equation 
(1.6) with respect to the function f (5). We have 

j(x) = -$&?(‘) + 5 [EkB(irk,x) + F,8(i~,,~)i, a<x<b (1.13) 
k=l 

The constants &‘k and Fk can be found from the condition that (1.13) is equivalent 
to the first relation of (1.3) and hence to (1.12). Obviously, Ek and Fk are linear 
functionals in q (z), i. e. Ek = Ek (q) and Fk = Fk (q). Let us now substitute into 
(1.13) the expression (1.8) for q (x). Taking also into account the fact that 

9 B (iA,, x) = K (i6,) B (id,, x) = 0 

-$$j R (if?,, x) = K (id,) R (it&, x) = 0 

we reduce (I. 13),and hence (1.12), to the form 

5 ; W&,~ + W%) B (Q’,, 4 + G&,, + 
k=ln=l 

.Q$',) Ji'(bk, x)1 -t K-l (g) x [ Ek*B (iy,, x) -j- F,“R (irk, 3)~ = 0 
k=l 

&!R(~,41 = Eb*, Ek [B(%,, 41 = -%,, Ek [R (i6,, s)] = EL 
J-i, fr;‘(~, 41 = F,c*, F, (B(%, 41 = F;n, I’, [R (&, z)] =1 F&., 
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Assuming finally that the functions B (iykr x) and H (iykr X) (k = 1, 2, 3 . ..) are 
linearly independent, we obtain the following two infinite algebraic systems of the first 

kind for the constants C, and D, entering the solution (1.10) of the dual equation (1.3): 

K-’ (F) E,* + 5 (C,E,‘, + DJ’f,,) = 0 (1.14) 
tL=l 

(ii = 1, 2, 3, . .) 

K-’ (F) F,” _t- i (C,E,, + D,Fin) = 0 
-1 

When considering particular examples, we shall construct the systems (1.14) by direct 

computation of the integrals in (1.12). 

2. Dual integral aquatfonr generared by the Kontorovfch-Lobs- 
dev and Mehler-Fock integral tranrform8. If we assume that in(l.l) 

L=s2-2+&-c& o<x<=-J 

then the functions B (u, x) and M (u, c) in the integral transform (1.2) have the form 

B (u, x) = Ki, (x), M (u, E) = 2un-*shnnC-l Kiti (Q (2.2) 

where Ki, (x) is the MacDonald’s function. The transform (1.2), (2.2) obtained here 
is the Komorovich-Lebedev integral transform. The dual integral equation (1.3) gene- 
rated by this transform can, in accordance with Sect. 1, be reduced to (1.12) in which 

(2.3) 

0 

where (I-, (E) = R (ix, j) is a cylindrical function of an imaginary argument, and 
the solution of this dual integral equation can be written in the form of (1.10). 

Let us transform the relations (1.12) into an infinite system of linear algebraic equa- 
tions with respect to the unknown C, and D, given in the expansion (1.8), by computing 
the integrals in (2.3) and (1.12). The integrals in (2.3) can be found with the help of 

the well known relations given in p], while the computation of the integrals in (I. 12) 
can be reduced to finding an integral of the form 

Using the integral transforms 

Kiz (k) = Ch-l $- r COs (x ch s) COS rsd.9 
L 
0 

(2.4) 
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we compute the integral (2.4) for 

s (2, d) = 
i 

0 

any Yk 

For Yk = k(k = 1, 2, 3, . ..) , the above expression agrees with a well known result 

(see PI). 
Substituting values of the functions T,, (z, /_I) and Uk (z, p) thus obtained from 

(1.12) into the first relation of (1.12) and equating to zero the coefficients accompany- 
ing the linearly independent functions KY, (X) and IYk (z), we obtain the following 
infinite system for determining the unknowns c, andUn : 

ef; FJ2 [ Kir' (6) K,, (b) - Ki, (b) Kbk WI + 
k 

5 cn 
6,2 - Tlr2 

f K:s, (4 K,, (b) - K-s,, (4 K;, (b)J 4 
11=1 

7 _, 6 ,f, 2 &,W,, (b) - L,(b) K,,@)l = 0 

?,=I 7% k 

K-l (E) 

e2 + Tit2 
1Kie’ (a) Iyk (a) - Kis (a) II, (a)1 + 

5 6 ,k 7k2  f K-s,, (a) I-,;, (a) - K-B,~ (a) It,; (a)1 t 
?I=1 n 

An analogous infinite system was obtained in [6] by a different method, and was re- 
duced to an infinite system of the second kind. A zeroth approximation was also con- 
structed for it, with 1 6, 1 -+ 00 and 1 yk 1 -+ co. 

If we now assume that in (1.1) 

y = ch .%, o,<c<oo 

then the functions B (u, CZ) and ~%f (II, g) in the integral transform (1.2) become 

B (u, z) = Plllt;+i, (ch 4, A!f (u, E) = u t h ~LPI?‘~+~~ (ch E) (2.5) 

where PI;,, +iu (ch X) is the Legendre function. The transform (1.2) (2.5) obtained 
here is the Mehler-Fock integral transform. The dual integral equation (1.3) generated 
by this transform for a = 0 , becomes : 

00 

5 Q(~)K(~)P”,,+i,(chs)dt =f(z), o<(s<b (2.6) 
0 c-2 

s Q (r) EC’ip+ir (ch x) dz = 0, b<x<m 
0 
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In accordance with Sect. 1, its solution can be constructed in the form 

Q (u) = U th s’CU S Q (E) PIy2+iu (ch E) sh WE 
0 

(2.7) 

4 (4 = ;;f$, f(X) + fi GP:,z-sn (ch x) + DnQ:,2-Gn (ch x)] 
?l=1 

Imposing on the function (7 (2) the conditions of boundedness at x = 0 and taking 
into account the fact that Q~~-~,, (ch x) has a logarithmic singularity at x = 0 , we 

set D, = 0 (72 = 1, 2, 3 , . ..). In the following we shall also assume m = 0, since 
when m # 0 , the dual equation (2.6) can be reduced [9] using the relation 

PY:*+is (x) = (x2 - 1p2 
CPP -*,‘,+ir tz) 

dxm (2.8) 

to the dual equation (2.6) with m = 0. 
Let US UOW franSfOrm the expression (1.12) into an infinite algebraic system in the 

unknown c, from (2.7), by finding cp (u, x) from (1.10) and Tk (5, p) from (1.12). 
We have b 

'p (~7 X) = u th nUS P-I,;-x (ch y) P-t/z+ill (ch y) shy dy = (2.9) 
0 

$$$- IP-l;,+iu (ch b) Pll,z-r (ch b) - 

P-t;-% (ch b) PAa/,+iu (ch b)] U th 3t~ 

Using (2.9) we can reduce the problem of finding the function Tk (z, p) to that of 
computing integrals of the form 

Sl@,b) = [ T:rr_l;;z P-l,‘,+iz (ch x) P-l,,+is (ch b) dT 

0 

The latter can be solved using the integral representations [9] of the functions P-l,;+ir 
(ch 5) and Q-l,h+ir (ch b). We have 

” (” ‘) = i 

P-l;p--YI( (ch 4 Q-y2+Yk (ch b), z < b 

Q-I,~+~~ (ch x) P-vz-yk (ch b), b < z 

Substituting the function Tk (x, CL) obtained in this manner into the first relation of 

(1.12) and eauating to zero the coefficients accompanying the linearly independent 
functions P-I,,,_, 

E 
(chx)(k = 1, 2, 3, . ..J. we obtain the following infinite system 

for the unknown n : 

K-’ (E) 

“’ i Tk2 
[P-l ,tie (ch 6) Q’-1 I+Yk (ch b) - PL,+ir (ch b) Q--l:z+Yk (ch b)l f 

ii 6 25, I@1 s-6, (ch 6) Q-~,hiuk (ch b) - 
n=1 n 

++ (ch b) Q!i:p+yk (ch b)] = 0, k = I, 2, 3, . . 

Let us introduce into this system the following new unknowns : 

x, = - i Jf/?lC, [v2 ch 6 GnQ_,,,2+~n (chb)]-’ 
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The system then becomes 

BX =D, X =jx,jj 

Q-s+uk (ch b) - P++ (ch b) Q!l,:+yk (ch b)] 
(1 

D=Pkll= II - K-‘(E) r (rk + 1) (2 ch b)yk+l 

(ea + rk2) r (r,, + %) 
I P+,+ie (ch b) x 

Qh+yk (ch 4 - P:?;+yk (ch 4 Q-t,;+yk (ch 41 II 
It can be verified that for b --f 00 ,the matrix B tends to the matrix 

A = 11 (iyk - i&J-’ 11 

Using the inverse matrix A-l [l] we can reduce (2.10) to the form 

X = A-l (A - B) X + A-lD (2.11) 

and the solution of (2.11) can be constructed by the method of consecutive approxima- 
tions for large values of b. For b --t 00 the system (2.10) becomes 

AX = D”, D”=limD= 
I/ 

K-’ (E) r (iE) (2 ch b)” 

b-rm (7, - iE) I’ (iE + l/z) 
II 

and its solution [l] is 

cc, =z 
ir (iE) (2 ch b)iL 

li, (--E) r (iE + l/z) (is, + E) K,’ (- is,) ’ a = 1, 2, 3, . . . (2.12) 

K (4 = K+ (u> K- (u) 
where K+ (u) and K_ (u) are functions regular in the upper and lower semi-plane, 

respectively. The expression (2.12) obviously represents the principal term of the asym- 

ptotics of (2.10) as b + 00. When b --t 00 , the second expression of (2.7) assumes 
the form 

Q (z) = K-’ (E) P_vp+ic (ch 5) - v;;l;i(i~(z ;“r”;)ie+;I, x 
+ -E iE 2 

) 

3, Exrmpl88, Let us set in the dual integral equation (2.6) 

K (T) = r-‘th yt, f (4 = P_,.,+ie (cl1 5), m=O 

Then 
e = --i (1 + I/&, b = 1, 2, . . . 

(2.13) 

6, = nnlr, rk = n (2k + 1)/W 
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Using the asymptotics of the Legendre functions for large value of their argument it is 
easy to confirm that the series in (2.13) converges for 0 < I < b and diverges for x = 
b . Moreover, (2.13) can be transformed into another expression containing an explicitly 

separated singularity, which is important for practical applications. We have 

( 2n -I)!! 
(2n)!! 

The infinite sum in (3.1) now converges for 0 < I < b. 

1’. We consider the mixed problem of the theory of elasticity on extension of an 
elastic space with a plane annular slit whose internal and external diameter is denoted 

by c and d , respectively, acted upon at infinity by the forces p perpendicular to the 

plane of the slit. 
The above problem [lo] can be reduced to the dual integral equation (2.6) in which 

(r denotes the distance from the axis of symmetry) 

K (r) = t-l th rtr, f (2) = (1 + ch x)-t, ch z = s 
d2 + c* 

, chb= dl__c” (3.2) 

For r < c the stresses in the plane of the annular slit are [lo] 

ur (r) = 2 T/T p (1 + ch z)%c-‘q (z) 

Let us write the following approximate expression for the function f (5) from (3.2): 

N-l 

(1 + ch z)-’ = 2 P,P, (ch x), o<r,<b (3.3) 
l=O 

Then the approximate value of 0, (r) for b -P zu (c --s d) is found using the formula 
N-1 

ez (r) = 2v/2 p (1 + ch z)“~ a-1 2 fJql (z) 
I=0 

(3.4) 

where ql (2) is (3.1) with y = n. 
The critical tensile forces p+ at infinity,under which the slit begins to enlarge, is found 

from the condition [lo] 
p+ = Kn-1 lim [v/E--r bz* (r)]-r, 

7°C 
sz (r) = PS,* (r) 

where K is the modulus of cohesion of the material. On the basis of (3.4) we have 

(3.5) 

N-I 
p (21-1)!!(21+1)!! 
I (1!)2 

which holds when the value of c is close to that of d. 
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Table 1 gives the values of the coefficients fir appearing in the approximate formula 
(3.3) obtained by the method of least squares for N =3 for various values of c / d. The 
last column shows the relative errors of approximation given in percentage. 

Table 1 
Below we give the values of 

z:: 
0.893 -0.466 0.0723 0.004 

p* 1/T;/ K = 0.796 0.899 0.990 

0.873 -0.437 0.0638 0.03 

0”:; 
0.846 -0.400 0.0534 0.1 

For comparison purposes we note that 

0.807 -0.351 0.0413 0.5 for c / d = 0.6 , on the basis of [ll], 

p*Jf/6/ K = 0.922. 

2’. Let us now consider the problem of torsion of a truncated sphere. The piane part 
of its surface adhers to a circular cylindrical punch of radius C, while the spherical part 
is stationary. Let d be the radius of the plane of truncation. Then the problem can be 
reduced (see [9], p. 390) to the dual integral equation (2.6) with 

K (u) = u-1 tll yu ( f (2) = (ch z + l)-‘si th + 

where r denotes the distance from the symmetry axis in the plane of truncation, R is 

the radius of the sphere and 7~10, ~1 characterizes the degree of trunction of the sphere. 
Using the relation (2.8) we can transform Eq. (2.6) to its form corresponding to m = 0 

and 
f fz) = cr - 2 (1 + ch s);‘,‘s (3.6) 

where CI is a constant which shall be obtained later from the condition of integrability 
of the shear stresses under the punch. 

The shear stresses under the punch are Ip] 

fcppz (4 = - GE (ch 2 + i)% -&- Q (z), 
a2 + ra 

chx=V ,d - r2 

Let us approximate the function (3.6) using the expression 

f (4 = ClPO (4 - fj P,P, (4 (3.7) 
l=O 

Then the approximate value of ZQz (r) for b - “W (C ---t d) is found from the formula 

(3.8) 

where qI fs) is given by (3.1). 

It can be confirmed that (3.6) has a nonintegrable singularity at z = b (r = 0). 

Setting the coefficient of this singularity equal to zero, we obtain the constant cl 
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The quantity ql’ (5) in this case becomes 

v/n (2z+ I)!! th z (ch by+1 

27 VchbchxI 

n _ r (21+ 1) 
2n 3 

-’ (2n -I)!! chz nn’y, 
(2n)!! ! ) ch I 

Table 2 

c/d ) Da j PI ) Pr 1 % - 

0.3 1.92 -0.589 0.0787 
0 .4 1.81 

0 .OM 
’ -0.562 0.0707 

il.5 
0.01 

1.88 -0.526 
0.6 

0.0609 
1.84 

0.04 
-0.478 0.0490 0.1 

Table 3 

Y cld 

3.14 
3.14 

3.14 
3.14 

FE 
0:5 

1.0 
1.0 
1.0 

1 .5 
1.5 
1.5 

2.5 
2.5 
2.5 

-I- 

I 

- 

0.i 0.3 

0.132 0.411 0.753 
0.139 0.432 0.791 ::ii 

2.68 
2.80 

0.125 0.388 0.700 1 .I4 2.211 
0.142 0.448 0.837 1.42 2.64 

0.314 0.958 1.66 2.55 4.35 
0.399 1.21 2.09 3.15 5.14 
0.489 1.49 2.57 3.s7 6.LI 

0.201 0.619 1.09 1.72 3.11 
0.2339 0.736 2.30 2.03 ,?.Fl’t 
0.275 0.849 1.51 2.3s ct.llli 

O.tB4 0.507 0.903 I.44 2.67 
O.l8!J 0. :Jti 1.04 1.N “.!)!I 
0.209 0.649 1.21 1.91 3.37 

U.145 
0.164 
0.176 

0.451 
0.5M 
0.553 

0.427 
0.4li4 
0.495 

0.807 1 .:io 3.4.) 
0.916 1.48 2.71 
1.01 1.67 3.02 

0.134 
0.149 
0.157 

0.749 1.22 2 :: 1 
0.84J 1.37 2.:/k 
0.916 1.54 2.82 

0.5 0.7 (I.? 

(3.9) 
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The formula (3.6) for the shear stresses under the punch obviously holds when the 
value of c is close to that of d. 

Table 2 gives the values of the coefficients fil of the approximation (3.7) found by 
the method of least squares for N = 3 and for various values of c ! d. The last column 
shows the relative errors of approximation given in percentage. 

Table 3 gives values of & (r)(Ce)-l computed according to the formulas (3.8) and 
(3.9) for various values of c / cl, r I c and y. For comparison, the first two rows give 

the values of rQo- (r)(Ge)-1 for y = n, from Table 2 of [12]. 
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